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ABSTRACT

This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly
nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition
that occurs when the model jumps from one basin of attraction to the other. Four configurations of the
ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, en-
semble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are
evaluated with their ability in predicting the regime transition (also called phase transition) and also are
compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each
ensemble-based filter to the size of the ensemble is also examined.
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1. Introduction

Since Lorenz (1963), scientists in many disciplines
have paid a great deal of attention to methods for pre-
dicting the evolution of nonlinear systems. Because
nonlinear systems are sensitive to initial conditions,
accurate initial conditions are necessary and impor-
tant, but the levels of accuracy needed to make signif-
icant gains in prediction skill may be prohibitive. In
general, it has been recognized that data assimilation
involving strongly nonlinear models is a difficult and
unsolved problem (e.g., Miller et al., 1994).

In addition to the fact that measurements of
strongly nonlinear systems such as the atmosphere are
sparse or inaccurate, data assimilation schemes based
on assumptions of linearity may fail to track transi-
tions and diverge from the true state. Moreover, for
large applications with real data, this divergence may
be difficult to detect if there is no prior estimate of the
expected performance. Divergence may also be due to
inappropriate system noise or systematic errors in the
observations (Verlaan and Heemink, 2001).

In recent years, the ensemble Kalman filter has
gained popularity in data assimilation problems due
to its simple conceptual formulation and relative ease

of implementation. For instance, compared with the
traditional Kalman filter, the ensemble Kalman fil-
ter does not require a derivation of tangent linear
and adjoint models. Another feature of the ensem-
ble Kalman filter is the availability of the ensemble
for estimates of the forecast and analysis error covari-
ances that are consistent with the dynamics of the pre-
scribed model and observation error statistics. The
forecast ensemble mean and covariance are used to as-
similate observations and compute a new analysis en-
semble with appropriate statistics, which can then be
used to begin another cycle. The new analysis ensem-
ble can be formed either stochastically (Houtekamer
and Mitchell, 1998) or deterministically (e.g., Bishop
et al., 2001).

Limitations arise from using a finite-sized ensem-
ble, which limits the number of degrees of freedom
used to represent forecast and analysis errors. Ensem-
ble filter implementations also typically account only
for initial condition uncertainty, neglecting error due
to model deficiencies. The latter is true for any data
assimilation systems and is a consequence of the diffi-
culty in characterizing model deficiencies.

In this study we examine four different configu-
rations of ensemble Kalman filters for their ability
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to predict a nonlinear dynamic system. The Lorenz-
63 model is taken as a testbed for numerical experi-
ments. The specific question addressed is the follow-
ing: can ensemble-based data assimilation techniques
improve the prediction of nonlinear dynamics, espe-
cially a phase transition within the nonlinear system?
This paper also presents the first study to compare
four commonly used ensemble Kalman filters in data
assimilation.

2. Ensemble Kalman filter methods

In this section, we briefly describe different imple-
mentations of ensemble Kalman filters that have ap-
peared in the literature, and are frequently used for
atmospheric analysis and prediction.

2.1 Kalman filter

For a given time t, the basic analysis equation for
the Kalman filter can be written as:

Xa,t =Xb,t+P f,tH
T(HP f,tH

T+R)−1(Y t−HXb,t)
(2.1.1)

with the analysis error covariances given as:

P a,t = P f,t − P f,tH
T(HP f,tH

T + R)−1HP f,t

(2.1.2)

where X and Y denote the model state vector and
observation vector, respectively. The subscripts b and
a denote the background (first guess) and analysis
model state vector. The H represents the observa-
tion operator, which transforms the model state to
the observation vector. The superscript T denotes
the transpose of the matrix. The phrase Y t − HXb,t

is called the innovation vector. The weight matrix,
K = P f,tH

T(HP f,tH
T + R)−1, is also called the

Kalman gain matrix.
The P f,t and R represent the background error

covariance and observational error covariance, respec-
tively. They can be defined as:

Xb,t = Xtr,t + εb P f,t = 〈εbε
T
b 〉 , (2.1.3)

Y t = HXtr,t + εR R = 〈εRεT
R〉 , (2.1.4)

where subscript tr denotes the true state and 〈·〉 de-
notes the expected value. εb and εR are the back-
ground and observation errors, respectively.

Given a linear dynamical model M written in a
temporal discrete form as:

Xb,t+1 = M(Xt) . (2.1.5)

The error covariance equation becomes:

P f,t+1 = MP a,tM
T + Q , (2.1.6)

where the matrix Q is the error covariance matrix for
the model errors, which is typically ignored in prac-
tice, although its characterization is an active area of
research. MT is the adjoint operator. The equations
(2.1.5) and (2.1.6) are integrated to produce the fore-
cast for Xb,t and P f,t, used in the analysis Eqs. (2.1.1)
and (2.2.2).

2.2 Ensemble Kalman Filter (EnKF)

To overcome the fact that the true state Xtr is un-
known in many systems, the ensemble Kalman filter
(EnKF) was first proposed by Evensen (1994). In the
EnKF, the error covariances P f is approximated us-
ing an ensemble forecast and it is assumed that the
ensemble mean is the best estimate of the true state
(Evensen, 2003). For notational simplicity, the time t
subscript in the previous subsection (2.1) is dropped
in all of the following sections; it is assumed unless
noted otherwise that we are interested in estimating
the state at time t.

P f = (Xb − Xtr)(Xb − Xtr)T

≈ (Xb − Xb)(Xb − Xb)T ,

and

P a = (Xa − Xtr)(Xa − Xtr)T

≈ (Xa − Xa)(Xa − Xa)T ,

where X denotes the ensemble mean.
As proposed by Evensen (1994, 2003), perturba-

tions are added to the observations in order to im-
plement the EnKF, and serve to maintain variabil-
ity in the ensemble because the covariance estimates
are biased low due to the finite size of the ensemble.
A matrix X is used to hold all ensemble members:
X = {x1, x2, . . . , xn} ∈ ∏n×N , where N is the num-
ber of ensemble members and n is the size of the model
state vector. Given ensemble mean X, the ensemble
perturbation matrix can be obtained as:

X ′ = X − X . (2.2.1)

The ensemble covariance matrix P f ∈ ∏n×n can be
defined as:

P f = X ′(X ′)T/(N − 1) . (2.2.2)

Given a vector of observation d ∈ ∏m, where m is the
number of measurements, we can define the N vectors
of the perturbed observations as:

D = {d1, d2, . . . , dN} ∈
∏

m×N ,



NO. 3 PU AND HACKER 375

where

dj = d + εj , j = 1, . . . , N . (2.2.3)

The ensemble of mean-zero observation perturbations
can also be stored in the matrix:

γ = (ε1, ε2, . . . , εN ) ∈
∏

m×N . (2.2.4)

Then, we can construct the ensemble representation of
the measurement error covariance matrix:

Re = γγT/(N − 1) . (2.2.5)

Based on Eq. (2.1.1) and using definitions of the en-
semble error covariance matrices in (2.2.5) and (2.2.2),
the analysis can be expressed as:

Xa =X+X′X ′THT(HX ′X ′THT+

γγT)−1(D−HX) . (2.2.6)

Evensen (2003) introduced an efficient way to solve
Eq. (2.2.6) for a large m (number of observations) with
a singular value decomposition (SVD) method, assum-
ing the ensemble perturbation and observational error
are uncorrelated.

2.3 Ensemble Adjustment Kalman Filter
(EAKF)

The EAKF is derived as a Monte Carlo approxima-
tion to the nonlinear filter without perturbing obser-
vations (Anderson, 2001). It is assumed that the prior
ensemble forecast distribution can be represented by
a Gaussian distribution with covariance P̂ f and mean
X̂b where X̂b = (Xb, Y ) is the joint state consist-
ing of both the state and observations. The mean and
covariance of the updated ensemble is

X̂a = P f[(P̂ f)−1X̂b + HTR−1HY ] , (2.3.1)

P f = [(P̂ f)−1 + HTR−1H]−1 . (2.3.2)

In order to get the updated ensemble, a linear operator
S is applied to the prior ensemble

X̂a,i = ST(X̂b,i − X̂b) + X̂a, i = 1, . . . , N ,
(2.3.3)

where X̂b,i and X̂a,i are individual members of the
prior and updated ith ensemble members of the joint
states. A method for computing the appropriate S
can be found in Anderson (2001).

2.4 Ensemble Square Root Filter (EnSRF)

Whitaker and Hamill (2002) described the EnSRF,
which conducts a set of parallel data assimilation cy-
cles without perturbed observations. In the EnSRF,

the update for the ensemble mean (denoted by an over-
bar) and the deviation of the ith ensemble member
from the mean is separated:

Xa = Xb + K(Y − HXb) , (2.4.1)

X ′
a,i = X ′

b,i − K̃HX′
b,i . (2.4.2)

Here, K is the traditional Kalman gain matrix as men-
tioned in section 2.1 and K̃ is a “reduced” gain matrix
used to update deviations from the ensemble mean:

K̃ =

(

1 +

√
R

HP fH
T + R

)−1

K . (2.4.3)

The modified Kalman gain matrix is derived to obtain
the correct analysis-error covariance with unperturbed
observations, and is reduced in magnitude relative to
the traditional Kalman gain.

2.5 Ensemble Transform Kalman Filter
(ETKF)

According to Bishop et al. (2001), the ETKF
represents the forecast error covariance matrix by
forecast perturbation: P f = Zf(Z f)T, where Zf =
(1/

√
k − 1)X f, X f = (xf,1 − xf, xf,2 − xf, . . . , xf,k −

xf), xf,i(i = 1, 2, . . . , k) are the k-ensemble forecasts
and X f is the ensemble mean. To obtain the analysis
ensemble perturbations, forecast ensemble perturba-
tions X f, are subjected to a linear transformation via
a T matrix so that the distribution of the transformed
ensemble perturbations matches the Kalman filter ex-
pression for the analysis error covariance:

P a = P f − P fH
T(HP fH

T + R)−1HP f

= X fTT TXT
f . (2.5.1)

The minimum error variance state estimates based on
the standard Kalman filter equation is given by

Xa = X f + P fH
T(HP fH

T + R)−1(Y − HX f)

= X f + X f[CΓ1/2(Γ + I)−1ET]×

[R−1/2Y − R−1/2HX f] (2.5.2)

where C and Γ are the eigenvectors and eigenval-
ues of XT

f HTR−T/2R−1/2HX f, respectively, and E

contains the eigenvectors of R−1/2HXfX
T
f HTR−T/2

that are not in the null space of X fX
T
f .

The transformation matrix (T ) can then be shown
to take the form T = C(Γ+I)−1/2CT so that the nor-
malized analysis ensemble perturbations are given by
Xa = X fT (Bishop et al., 2001). Wang et al. (2004)
further developed the ETKF by centering the analysis
ensemble perturbations, and reported an improvement
in the method.
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2.6 Comments on different methods

All ensemble-based Kalman filters described in sec-
tions 2.2–2.5 use the ensemble forecasts to estimate
the background-error covariance matrix P f and pro-
duce an ensemble of analyses. However, it should
be noted that the EnKF assimilates perturbed ob-
servations rather than the observations themselves.
The algorithm updates each ensemble member with
a different set of observations perturbed with random
noise Eq. (2.2.3). Because randomness is introduced
in every assimilation cycle, the update is considered
stochastic. All of the other three methods (EAKF,
EnSRF and ETKF) do not add stochastic noise to
the observations. They are all called deterministic al-
gorithms (Hamill, 2006). Tippett et al. (2003) com-
mented that these deterministic analysis ensemble up-
dates are the implementations of Kalman square root
filters. Due to the non-uniqueness of the determinis-
tic transformation used in square root Kalman filters,
as showed in sections 2.3–2.5, three methods (EAKF,
EnSRF and ETKF) use different ways to update the
ensemble perturbations.

3. Numerical experiments and results

The Lorenz-63 model is used as a test bed to exam-
ine the above ensemble Kalman filters in strongly non-
linear dynamics. One of the most challenging aspects
of it is an intermittent regime change from one basin
of attraction to another, where each basin forms one
of the wings of the butterfly-shaped attractor. The
regime change is generally difficult to predict. The
equations of the model can be written as:

⎧
⎨

⎩

dx/dt = −σ(x − y) ,
dy/dt = −xz + γx − y ,
dz/dt = xy − βz ,

(3.1)

where x(t), y(t), and z(t) are the dependent variables,
and σ, γ, and β are parameters of the model. We
have chosen the following commonly used values for
the parameters in the equations: σ = 10, γ = 28, and
β = 8/3. The model is then written in discrete form
and integrated using a fourth-order Runge-Kutta time
scheme with a time step of ∆t = 0.01.

The initial conditions for the reference (true) state
are given by (x0, y0, z0) =(1.22, 0.412, 20.49), which
is obtained by integrating the model for an extended
period starting from an arbitrary initial condition. To
develop a clear demonstration, in this study we exam-
ined only one complete trajectory around both wings
of the attractor, for a total of 200 time steps, specify-
ing observations 8 times during the first 80 time steps
in one phase (wing) of the attractor. Numerical ex-
periments are then performed to quantify whether as-

similating these “observations” of the state (x, y, z) on
one wing (phase) of the butterfly will lead to an accu-
rate forecast of the phase transition and an improved
forecast for the other wing (phase) of the attractor.

The observations and the initial conditions to gen-
erate ensemble forecasts are simulated by adding nor-
mally distributed noise with a zero mean and a stan-
dard deviation equal to 1.0 to the reference solution.
For the observations, the variables x, y and z are mea-
sured at 8 observational times. For the data assimila-
tion experiments, an ensemble of 20 members provides
the sample of the background and analysis distribu-
tions. Figure 1 shows a single orbit of the reference
(true) state, observations, the ensemble and the en-
semble mean when no data assimilation is performed.
The ensemble serves as the first guess for the data
assimilation experiments. As shown in Fig. 1, the
ensemble mean of the guess fields is far away from
the reference state, indicating the sensitivity of phase-
transition predictions to small perturbations.

The aforementioned four ensemble Kalman filters
(sections 2.2–2.5) are implemented for the data as-
similation experiments. The data assimilation is per-
formed sequentially at each observing time during the
first 80 steps. Table 1 shows the Root Mean Square
(RMS) errors of the ensemble mean E1 for different ex-
periments before and after the data assimilation. E1

is defined as

E1 =

√
√
√
√
√

1
m

m∑

i=1

⎛

⎝ 1
n

n∑

j=1

Xi,j − Xi,tr

⎞

⎠

2

, (3.2)

where n = 20 is the number of ensemble members,
m = 3 is the number of state variables, Xi,j is the
jth ensemble member for the ith variable, and Xtr

is the “true” state from which the observations were
sampled. The table compares E1 for the ensembles of
the initial guess fields, for the guess (before data as-
similation) and the analysis (after data assimilation)
fields averaged over 8 analysis steps. It shows very
clearly that the analysis error has been significantly
reduced after the data assimilation. However, conver-
gence from different methods varies in terms of the
value of E1 for the analysis in different experiments.

To demonstrate the impact of data assimilation,
Fig. 2a shows the ensemble mean of forecasts during
steps 81 to 200 from all four experiments, compared
with the ensemble mean of the guess fields and the ref-
erence (true) state. Notable improvement in forecasts
is found: all experiments with ensemble Kalman filters
predict the phase transition of the nonlinear system.
Forecast errors are also significantly reduced.

Experiments are conducted to investigate the sen-
sitivity of the ensemble Kalman filters to observational
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Fig. 1. The left panel shows the reference (true) state (blue curve) and observations (red stars).
The right panel presents the true state (black curve), 20 ensemble members of the first guess fields
(green curves) and the ensemble mean of the guess fields (red curve).

 

       

        

 (a)  (b) 

 (c)  (d) 

Fig. 2. Sensitivity of ensemble Kalman filters to the observational errors. The figures show the
forecasts from the analysis obtained by assimilation of the data with a standard deviation of the
errors equal to (a)1, (b)2, (c)3, and (d)5 with different ensemble filters.
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Table 1. Comparison of E1 before and after the analysis for all experiments.

Experiment E1 (guess field) E1 (Before analysis) E1 (After analysis)
Averaged over all Averaged over all

analysis steps analysis steps

ENKF 3.18 1.918 1.109
EAKF 3.18 1.402 0.949
EnSRF 3.18 1.368 1.239
ETKF 3.18 1.241 0.851

errors. Increased random errors—with the mean of
the error equal to 0 and the standard deviation of the
errors equal to 2, 3, and 5, respectively—are added
to the reference state at the same “observational sta-
tions” to generate three additional sets of observations.
Data assimilation experiments are repeated with four
ensemble Kalman filters using these three sets of obser-
vations. Figures 2b, 2c, and 2d show the mean of the
ensemble forecasts after data assimilation with each
method, compared with the first guess and the ref-
erence state. It is apparent from Fig. 2 that all of
the methods are sensitive to the levels of observational
error. With the increase in observational errors, the
forecast error becomes larger and the model tends to
fail to predict the phase transition. Even in the case
when the standard deviation of the observational er-
rors equals 2 and the forecast errors are small in most
of the cases, the phase errors are already seen in the
forecasts. When the standard deviation of the obser-
vational errors increases to 3 and then 5, significant
errors appear in both the forecast and the phase tran-
sition for almost all the methods.

Ensemble Kalman filters use the ensemble forecasts
to obtain the error covariance of the background fields.
They are only optimal in an infinite ensemble. How-
ever, a finite ensemble size must be used in real appli-
cations because of the computational expense. There-
fore, sampling error is present in any ensemble filter
data assimilation system. In order to examine the sen-
sitivity of ensemble Kalman filters to the ensemble size
used in the data assimilation, additional experiments
are also performed with the use of 10, 50, and 100
ensemble members and the results are compared with
the experiment using 20 ensemble members. Figure 3
shows the variances of the analysis relative to the refer-
ence state averaged over 8 analysis steps, and the vari-
ances of the forecasts relative to the reference state.
The EnKF method is sensitive to the ensemble size
used in data assimilation. The other three methods
do not appear as sensitive to the choice of ensemble
size.

Sources of background error are various in real
cases, and include both sampling errors and errors in
the model formulation. Model error is often ignored

because it is difficult to quantify, and sampling error is
not explicitly accounted for in the ensemble filter for-
mulation. This results in an under-estimation of the
background error covariances. In order to compensate
for the sampling error, an inflation factor is often used
to multiply to the background covariances and enlarge
the background error (Anderson and Anderson, 1999).
When properly tuned, the inflation factor can improve
the convergence of the analysis during data assimila-
tion. Although the optimal inflation factor should be
tuned and may be different for each filter algorithm,
we performed a limited set of experiments to examine
the sensitivity. Two experiments are completed with
inflation factors of 1.02 and 1.05, and the results are

 

 

 

 

 (a) 

 (b) 

Fig. 3. Sensitivity of ensemble Kalman filters to the en-
semble size. The figure shows (a) variances of analysis
relative to the reference (true) state and (b) variances of
the forecast relative to the true state from four ensem-
ble Kalman filters with the use of 10, 20, 50, and 100
ensemble members.
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Fig. 4. The impact of an inflation factor on ensemble
Kalman filters. The figure illustrates (a) the Root Mean
Square (RMS) error of the ensemble mean relative to the
observations and (b) the RMS error of the ensemble mean
relative to the reference (true) state from four ensemble
Kalman filters with an inflation factor of 1 (without in-
flation), 1.02 and 1.05.

compared with the previous experiment without the
inflation.

Figures 4a and 4b show the root mean square er-
rors of the ensemble mean relative to the observations
and the reference state, respectively. Apparently, all
of the four ensemble Kalman filters are sensitive to
the inflation factor. Specifically, a larger inflation fac-
tor causes the analysis results to be closer to the ob-
servations, while a smaller inflation factor results in
the analysis being relatively farther from the obser-
vations. However, since observations are usually not
perfect, the larger inflation factor does not always lead
to smaller forecast errors. Compared with the experi-
ments without the inflation factor, the inflation factor
of 1.05 leads to poorer forecasts in most of the ex-
periments, whereas the inflation factor of 1.02 results
in the best forecasts using all of the four ensemble
Kalman filters. Therefore, only a properly defined in-
flation factor will benefit the analysis and forecasts.

4. Summary

In this study, we examined four ensemble Kalman
filters in terms of their abilities to analyze and predict

nonlinear dynamics. Although the simple model (e.g.,
Lorenz, 1963) is used, results still lead us to some use-
ful conclusions. Specifically, it is found that:

(1) Ensemble-based Kalman filters can help im-
prove the prediction of the nonlinear dynamics during
the phase transition;

(2) All methods are sensitive to observational er-
rors; when observational errors become larger, the
forecast of the nonlinear system tends to be more un-
certain. However, different filters may have different
abilities to tolerate the observational errors;

(3) Accuracy of the analysis depends on the size
of the ensemble in the analysis cycle, and in order to
achieve the same accuracy, one method may require a
smaller ensemble size than another;

(4) Phase transition prediction skill is sensitive to
the magnitude of the inflation factor, implying that
sampling error may be present in those experiments.

This study has proven that ensemble Kalman fil-
ters are a useful tool for atmospheric data assimilation
in the presence of nonlinearity. Results pointed out a
number of factors we must consider in real applica-
tions. However, since the real cases could be much
more complicated than the simple model presented in
this study, conclusions from this study will be further
confirmed with more advanced modeling systems in
future work.
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