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Statistical Conditions for a SGS model

* What conditions should a SGS model satisfy?

-Specifically we are interested in answering the question what statistical properties should
r;and ;"¢ share?

-We know a “good” model should adhere to our equations of motion:
* Invariance to translation, rotation, and reflection (in the absence of boundaries)
* Hopefully, invariance to Re
* Ideally, invariant to A

-To get more specific than this, we need to talk about statistics of SGS models (Meneveau,
Physics of Fluids, 1994).
* To obtain correct 1t and 2" order moments of our resolved field, our model must
at least be able to produce average modeled stresses that match the real stresses
everywhere.
* This doesn’t guarantee that our 2"¥ order moments are correct it is only a
necessary condition.
* To produce 2" order moments, we need to have our model reproduce 2" and 3™
order SGS stats including stresses and correlations (e.g. stresses with velocity or
gradients). This includes matching <M> everywhere.
* For even higher order moments we need to match higher order SGS stats...
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Computing SGS quantities

* Procedurally, How do we compute these SGS stats from data (DNS or Experiments)?
Here is a “quick” list, also see the handout Project_apriori_study.pdf on the web.

-Select your data (after quality control) and identify missing velocity or gradient terms

-Separate the data into resolved and SGS scales by calculating @; and u;u; with an
appropriate LES filter (see lecture 5 for the most common examples).

At this point, a decision must be made: to down-sample or not (see Liu et al.,JFM 1994)
-Down-sampling means removing points from the field that are separated
(spatially) by < our filter scale A (denoted by the ~). Effectively this means we keep
less points than we started with (e.g. from 1283 to 323) after filtering.

-Pros: we get a “true” representation of the effect of gradient estimates on our
SGS models and avoid enhanced correlations due to filter overlap.

-Cons: we lose data points (important if we have limited data) and we now need
to consider the above gradient estimation errors!

e -~ - 1 L 0
-Calculate local values of all the components of T,L% = UjU; — UU; and S;; = 3 (SZ + gzj>
you can (you may need approximations here based on your data! ’ '

-For some models you may need to calculate other parameters (e.g., mixed and nonlinear
models) but the general procedure is the same
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Computing SGS quantities

-Recall that some filtering examples are given on the website under data/mfiles

-Once you have these basic quantities calculated you can calculate model values Ti?’M
and statistics of the actual (from data) and modeled SGS stresses including average values,

correlation coefficients and variances (see project handout).

-We can also calculate other SGS statistics like (IT®) = —<T£§¢j> and (TT™M) or any
model coefficients of interest (see handout for an example).

* The following pages give some examples of SGS statistics and model coefficients
calculated form various references (discussed in class).
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SGS Dissipation

* SGS Energy transfer from experiments in the Utah desert (Carper and Porté-Agel , 2004)
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* SGS Energy transfer from DNS of turbulent channel flow Re=3300 (U ) (Piomelli et al., 1991)

Il = —T.zjjS.ij

Decreasing filter size A
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SGS Model Correlation Coefficients
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Model coefficients evaluated by matching M from

SGS Model Coefficient Estimates

ABL study of Sullivan et al (2003).
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Smagorinsky coefficients with stability (Kleissl et al, 2004)
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Coherent Structures and SGS models

* SGS and coherent structures in the Utah desert (Carper and Porté-Agel, 2004)
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