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Kolmogorov’s Similarity hypothesis (1941)

* smallest scales receive energy at a rate proportional to the dissipation rate (¢)

With this he defined the Kolmogorov scales (dissipation scales):

2% Ul —3/4
* lengthscale: n = — = 7~ Re
V\ 2 v _
 timescale: 71= (—) : = — ~ Re /%
€ U,
: oy l T —1/2
* velocity scale: v = (ve)*? = Re

Kolmolgorov also hypothesized:

In Turbulent flow, a range of scales exists at very high Re where statistics of
motion in a range /¢ (for/, >> ¢ >> n) have a universal form that is
determined only by € (dissipation) and independent of v (kinematic viscosity).
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Spectral representation of turbulence

* Fourier decomposition of a signal => the signal (e.g., velocity) is represented by
a series of sine and cosine waves of different amplitudes and wavelengths (in 1D):

u(, t) =Y d(k,t)e™
k

where k is the wavenumber (wavelength A=21/k) (See Pope 6.4 and Appendix
D,E,F,G or the handout from Stull 88 for details)

* Fourier transforms are useful to study the energy content of a signal with
respect to scale (size of motions). They are also used in numerical methods and
many other applications.

* The energy content of a signal can be represented by the Energy spectral

density:
E(k) = Energy spectral density ~ u(k,t)u(k,t)*

where
E(k)dk = t.k.e. contained between k and k + dk

and 00
total t.k.e = /E(k)dk

0

UTHE UNIVERSITY OF UTAH=




Spectral representation of turbulence

* What are the implications of Kolmolgorov’s hypothesis for E(k)?
K41l = E(k) = f(k,¢)
By dimensional analysis we can find that:
E(k) = ¢, ?/Bk=2/3
* This expression is valid for the range of length scales ¢ where ¢/, >> ¢ >>n
and is usually called the inertial subrange of turbulence.

* graphically: A
log(E(k))
Energy :
containing range |
(Production Dissipation range
subrange) i Inertial (viscous subrange)
i subrange
| ’ S

k~1/1, log(k) k~1/3\

Integral scale Kolmolgorov scale

UTHE UNIVERSITY OF UTAH=




Degrees of freedom and numerical simulations

* We now have a description of turbulence and the range of energy containing scales
(the dynamic range) in turbulence

* In CFD we need to discretize the equations of motion (see below) using either
difference approximations (finite differences) or as a finite number of basis functions
(e.g., Fourier transforms)

* To capture all the dynamics (degrees of freedom) of a turbulent flow we need to
have a grid fine enough to capture the smallest and largest motions (7 and /)

* From K41 we know EE ~ Re~3/* and we have a continuous range of scales between
nand ¢, ©

o . N : :
* We need ? ~ Re*/*in each direction. Turbulence is 3D => we need N~Re%* points.
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Degrees of freedom and numerical simulations

* When will we be able to directly simulate all the scales of motion in a turbulent

flow? (Voller and Porté-Agel, 2002, see handouts for the full paper)

In the mid 1960s Gordon Moore, the co-founder of Intel, made the observation that
computer power, P, measured by the number of transistors that could be fit onto a chip,
doubled once every 1.5 years [1]. This law, which has performed extremely well over the

proceeding 30 or so years, can be stated in mathematical terms as
P = A20.6667Y (1)

where A is the computer power at the reference year Y =0.

TABLE 11
Expected Year (£5) That the Given Direct Simulation Will Be Possible

100000000 If Grid Size Increases Are Bound by Eq. (2)
10000000 - A —10000 227 No Domain Resolution Grid points Expected year
- D" 0 Simulation length scale length scale required (&5 years)
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FIG. 1. Log of three largest grid sizes from each volume plotted against year.

Time Y
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Equations of Motion

* Turbulent flow (and fluid dynamics in general) can be mathematically described by
the Navier-Stokes equations (see Bachelor, 1967 for a derivation of equations)

» we use the continuum hypothesis (e.g., 7 >> mean free path of molecules) so that

= u; = u;(x;,t) and p = p(z;,1t)

* For incompressible flow:

-Conservation of Mass (divergent free velocity field):

8’LLZ'

- Conservation of Momentum:

ou; ou; 1 op 82u22- LR

Bt Y0z, T pow U 0a?
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Equations of Motion

* If we nondimensionalize these equations with a velocity scale and a length scale
(for example the Freestream velocity and the BL height in a boundary layer)

* We get (where the * is a nondimensional quantity):
ou’

-Conservation of Mass: - =0
ox!

- Conservation of Momentum:

our  oulu’ 0 1 J%u*

ot* (%Uj or; Re c%zj

. . Uogo
where Re is based on our velocity and length scales => Re =
1%

* For a general scalar quantity we have:
00*  Ju;0* 1 0%6* .
+ w *2 + Q
ot* 8azj Sc &cj
where Sc is the Schmidt number, the ratio of the diffusivity of momentum (viscosity)

and the diffusivity of mass (for temperature we use the Prandtl number Pr). Scis of
order 1 (Pr for air = 0.72)
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Properties of the Navier-Stokes equations

* Reynolds number similarity: For a range of Re, the equations of motion can be
considered invariant to transformations of scale.

* Time and space invariance: The equations are invariant to shifts in time or space.
i.e., we can define the shifted space variable
¢ =%/L wherez =2 — X
ort=(t—T)U/L
 Rotational and Reflection invariance: The equations are invariant to rotations and
reflections about a fixed axis.

* Invariance to time reflections: The equations are invariant to reflections in time.
They are the same going backwards or forwards in time =>

t=—tU/L
* Galilean invariance: The equations are invariant to constant velocity translations.
T=x—Vt
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