LES of Turbulent Flows: Lecture 4 (ME EN 7960-008)

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2009

Scale Separation

- We discussed LES in a very generic way to this point:
 - Resolve only the largest energy containing scales
 - Model the small "universal" scales
- Formally, how is this accomplished?
 - Using a **low-pass filter** (i.e., removes small scale motions)
- Our goal for the low pass filter:
 - Attenuate (smooth) **high frequency** (high wavenumber/small scale) turbulence smaller than a characteristic scale Δ while leaving **low frequency** (low wavenumber/large scale) motions unchanged.

Filtering

- Filtering (Saguat chapter 2; Pope chapter 13.2):
 - -The formal (mathematical) LES filter is a convolution filter defined for a quantity $\phi(\vec{x},t)$ in physical space as

$$\widetilde{\phi}(\vec{x},t) = \int_{-\infty}^{\infty} \phi(\vec{x} - \vec{\zeta}, t) G(\vec{\zeta}) d\vec{\zeta}$$

- $G \equiv$ the convolution kernel of the chosen filter
- G is associated with a characteristic cutoff scale Δ (also called the filter width)
- Taking the Fourier transform of $\widetilde{\phi}(\vec{x})$ (dropping the t for simplicity)

$$F\{\widetilde{\phi}(\vec{x})\} = \int_{-\infty}^{\infty} e^{-i\vec{k}\vec{x}} \int_{-\infty}^{\infty} \phi(\vec{x} - \vec{\zeta}) G(\vec{\zeta}) d\vec{\zeta} d\vec{x}$$

Here we will use Pope's notation for the Fourier transform: $F\{\phi(x)\}=\int\limits_{-\infty}^{\infty}e^{-ikx}\phi(x)dx$

Convolution

- we can define a new variable: $\, \vec{r} = \vec{x} - \vec{\zeta} \,\,$ and change the order of integration

$$F\{\widetilde{\phi}(\vec{x})\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\vec{k}(\vec{r}+\vec{\zeta})} \phi(\vec{r}) G(\vec{\zeta}) d\vec{\zeta} d\vec{r}$$

Note that $d\vec{r}=d\vec{x}$ because $\vec{\zeta} \neq f(\vec{x})$ and addition of exponents is multiplication =>

$$F\{\widetilde{\phi}(\vec{x})\} = \int_{-\infty}^{\infty} e^{-i\vec{k}\vec{r}} \phi(\vec{r}) d\vec{r} \int_{-\infty}^{\infty} e^{-i\vec{k}\vec{\zeta}} G(\vec{\zeta}) d\vec{\zeta}$$

$$= F\{\phi(\vec{x})\} F\{G(\vec{\zeta})\}$$

Sagaut writes this as:

$$\widehat{\widehat{\phi}}(\vec{k},\omega) = \widehat{\phi}(\vec{k},\omega)\widehat{G}(\vec{k},\omega)$$

where the hat (^) denotes a Fourier coefficient.

 $-\widehat{G}$ is the transfer function associated with the filter kernel G Recall that a transfer function is the wavespace (Fourier) relationship between the **input** and **output** of a linear system.

Decomposition into resolved and subfilter components

- Just as G is associated with a filter scale Δ (filter width), \widehat{G} is associated with a cutoff wavenumber k_c .
- In a similar manner to Reynold's decomposition, we can use the filter function to decompose the velocity field into resolved and unresolved (or subfilter) components $\mathcal{L}(\vec{x},t) = \mathcal{L}(\vec{x},t) + \mathcal{L}'(\vec{x},t)$

- Fundamental properties of "proper" LES filters:
 - -The filter **shouldn't change** the value of **a constant** (a):

$$\int_{-\infty}^{\infty} G(\vec{x})d\vec{x} = 1 \implies \tilde{a} = a$$

- **Linearity**: $\widetilde{\phi+\zeta}=\widetilde{\phi}+\widetilde{\zeta}$ (this is satisfied automatically for a convolution filter)

- Commutation with differentiation:

$$\frac{\widetilde{\partial \phi}}{\partial \vec{x}} = \frac{\partial \widetilde{\phi}}{\partial \vec{x}}$$

LES and Reynold's Operators

• In the general case, LES filters that verify these properties are not Reynold's operators

-Recall for a Reynold's operator (average) defined by $\langle \ \rangle$

•
$$\langle a\phi \rangle = a \langle \phi \rangle$$
 • $\langle \phi' \rangle = 0$

•
$$\langle \phi' \rangle = 0$$

•
$$\langle \phi + \zeta \rangle = \langle \phi \rangle + \langle \zeta \rangle$$
 • $\langle \langle \phi \rangle \rangle = \langle \phi \rangle$

•
$$\langle \langle \phi \rangle \rangle = \langle \phi \rangle$$

•
$$\langle \frac{\partial \phi}{\partial \vec{x}} \rangle = \frac{\partial \langle \phi \rangle}{\partial \vec{x}}$$

• For our LES filter, in general (using Sagauts shorthand $\int_{-\infty}^{\infty} \phi(\vec{x} - \vec{\zeta}, t) G(\vec{\zeta}) d\vec{\zeta} = G \star \phi$):

•
$$\widetilde{\widetilde{\phi}} = G \star G \star \phi = G^2 \star \phi \neq \widetilde{\phi} = G \star \widetilde{\phi}$$

•
$$\widetilde{\phi}' = G \star (\phi - G \star \phi) \neq 0$$

- For an LES filter a twice filtered variable is not equal to a single filtered variable as it is for a Reynold's average.
- Likewise, the filtered subfilter scale component is not equal to zero

Differential Filters

- **Differential filters** are a subclass of convolution filter
 - The filter kernel is the Green's function associated to an inverse linear differential operator
 - Recall, the Green's function of a linear differential operator L satisfies $L(x)G_r(x,s)=\delta(x-s)$ and can be used to find the solution of inhomogeneous differential equations subject to certain boundary conditions.
- The inverse linear differential operator *J* is defined by:

$$\phi = J(\widetilde{\phi}) = J(G \star \phi)$$

which can be expanded to: $= \widetilde{\phi} + \theta \frac{\partial \widetilde{\phi}}{\partial t} + \Delta_{\ell} \frac{\partial \widetilde{\phi}}{\partial x_{\ell}} + \Delta_{\ell m} \frac{\partial^{2} \widetilde{\phi}}{\partial x_{\ell} \partial x_{m}}$

Effectively we need to invert the above equation to define the filter kernel *G*. See Sagaut pgs 20-21 and the references contained therein for more information.

 Differential filters are not used in practice and can be considered an "advanced" topic in LES