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Abstract 1 

The snow-to-liquid-ratio (SLR) and its inverse, snow density, are crucial for forecasting 2 

snowfall in numerical weather prediction models and for estimating snow-water-equivalent (SWE) 3 

on the ground using remote sensing. SLR also varies widely in space and time, making it 4 

challenging to forecast accurately, particularly in the heterogenous terrain and climate of the 5 

mountains of the western United States. This study utilizes high quality, manually-collected 6 

measurements of new snowfall and new SWE from 14 mountainous sites across the region to build 7 

multiple linear regression (MLR) and random forecast (RF) algorithms to predict SLR as a 8 

function of atmospheric variables. 9 

When an MLR algorithm is trained on a simple combination of wind speed and temperature 10 

from either the ERA5 reanalysis, the GFS, or the HRRR, it predicts SLR with considerably more 11 

skill than existing SLR prediction methods. When a more extensive set of variables is considered, 12 

the skill improves further.  13 

The variables used to achieve the most skillful prediction of SLR are temperature, wind 14 

speed, relative humidity, specific humidity, maximum solar altitude angle during the observing 15 

period, CAPE, and HRRR QPF. When an RF algorithm is trained using these variables, it can 16 

predict SLR with R2=0.43 and MAE=2.94. For the existing SLR prediction techniques currently 17 

used in operations, R2 ranges from 0.04 to 0.23 and MAE ranges from to 4.01 to 9.45. Therefore 18 

the algorithms built in this paper can drastically improve SLR prediction over the mountains of 19 

the western US. 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 
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1. Introduction 32 

Snowstorms in the western United States are essential for providing the water that sustains 33 

life, agriculture, industry, and hydropower in the region (Diffenbaugh et al. 2015; Li et al. 2017; 34 

Hagenstad et al. 2018). They can also pose a serious hazard to life, property, and commerce 35 

(Blattenberger and Fowles 1995; Spencer 2009; Black and Mote 2015; Seeherman and Liu 2015). 36 

Therefore, the accurate prediction and estimation of snowfall is essential, yet it remains difficult 37 

and error-prone.  38 

Freshly-fallen snow is mostly air, with a snow-to-liquid ratio (SLR) ranging from 2:1 or 39 

lower to as high as 100:1 (e.g. Judson and Doesken 2000; Roebber et al. 2003). Consequently, for 40 

a given amount of liquid precipitation, the corresponding amount of snow can vary widely. This 41 

is a problem because contemporary snowfall prediction typically involves converting the liquid 42 

precipitation equivalent forecast that is directly predicted by numerical forecast systems (referred 43 

to as a quantitative precipitation forecast or QPF) to snow amount using an SLR (Alcott and 44 

Steenburgh 2000; Roebber et al. 2003; Byun et al. 2008; Pletcher et al. 2024). Conversely, for a 45 

given amount of snow, the corresponding amount of liquid can vary widely, posing a challenge 46 

for snow surveys and analyses that ingest the depth of new snowfall, yet seek to estimate the 47 

amount of liquid that has fallen (e.g., Raleigh and Small 2017). Therefore, the accurate prediction 48 

of SLR is essential to properly forecast snowfall and to measure snow-water-equivalent (SWE) 49 

from snow depth. 50 

There are many factors that influence SLR. For example, the ice crystal habit can affect 51 

how densely crystals will pack together, increased riming of crystals removes some air space, high 52 

winds and the resulting ice crystal collisions can remove crystal branches causing tighter packing 53 

of crystals, natural compaction of snow under its own weight can densify it, and melting or rainfall 54 

can fill the spaces between crystals with water (Pomeroy and Brun 2001; Roebber et al. 2003; 55 

Baxter et al. 2005; Byun et al. 2008; Alcott and Steenburgh 2010; Steenburgh 2023). All of these 56 

processes are not explicitly or reliably accounted for in operational numerical forecast systems, 57 

motivating the need for other approaches to predict SLR.   58 

Although SLR is known to vary, the simplest approach is to assume a fixed SLR.  In the 59 

past, and even for convenience today, an SLR of 10:1 was/is sometimes assumed.  The 10:1 rule 60 

was based on the findings of a single study conducted in eastern Canada that found a median SLR 61 

of 10 (Potter 1965; Roebber et al. 2003).  However, not only is an SLR of 13 more appropriate for 62 



3 

 

most of the US (Baxter et al. 2005), using a fixed SLR can be problematic over regions like the 63 

western US where significant intra- and inter-storm SLR variability occurs (Judson and Doesken 64 

2000; Alcott and Steenburgh 2010; Pletcher et al. 2024).  65 

To enable variable SLR prediction, the National Weather Service (NWS) National Blend 66 

of Models (NBM; Craven et al. 2020) uses four SLR methods referred to as 850–700-mb 67 

Thickness, Cobb, MaxTaloft, and Roebber in NWS training resources (Craven et al. 2020; The 68 

COMET Program 2023).  The methods used and their weighting varies depending on the numerical 69 

modeling systems.  The 850–700-mb Thickness method is used only for global ensembles and the 70 

data it requires would be subterranean at many western US sites, so it is not considered here. The 71 

Cobb method derives from Cobb and Waldstreicher (2005), although it has been revised several 72 

times.  The Cobb method in NBM version 4.1 first identifies the maximum upward vertical 73 

velocity (UVV) contained in a cloudy layer, then calculates a weighting factor based on UVV and 74 

layer thickness, then applies a temperature-SLR relation to each model layer, and finally computes 75 

a weighted sum of the SLR from all model layers (The COMET program 2023). Most recently in 76 

NBM v4.2, a melting factor was added to adjust SLR based on the surface wet-bulb temperature 77 

and 1-h precipitation rate in marginal snow environments (Rudack et al. 2024).  78 

The MaxTaloft SLR method is based on data from Alaska and uses a 5th degree polynomial 79 

to calculate SLR based on temperature: 80 

SLRMaxTAloft = 0.0000045 ∗ TMax
5 + 0.0004432 ∗ TMax

4 + 0.0130903 ∗

TMax
3 + 0.0585968 ∗ TMax

2 − 1.8150809 ∗ TMax + 5.9805722,  
 (1) 

where TMax is the maximum temperature (℃) between 610 m AGL and 400 hPa (The 81 

COMET Program 2023; Pletcher et al. 2024).  82 

The Roebber method is derived from Roebber et al. (2003) who trained an artificial neural 83 

network using snowfall observations from NWS sounding sites and input variables that include 84 

monthly solar radiation, temperature and relative humidity at multiple levels, wind speed, and 6-h 85 

SWE. The training data consisted primarily of data from the eastern two-thirds of the US (the only 86 

western US sites were Great Falls, Lander, Salt Lake City, and Denver, all in in non-mountain 87 

areas of the western interior). The artificial neural network predicted SLR in three classes [heavy 88 

(1:1 < ratio < 9:1), average (9:1 ≤ ratio ≤ 15:1), and light (ratio > 15:1)], but was modified to 89 

produce a deterministic SLR for the NBM (The COMET Program 2023).   90 
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The Kuchera method, although not used in the NBM, is often used by forecasters and 91 

meteorological websites. As stated in Rosenow et al. (2023): “The so-called Kuchera method has 92 

become commonplace in operational meteorology, including the NWS, despite having not been 93 

formally published. This technique was created by performing a linear regression on snow depth 94 

and liquid equivalent observations using the maximum temperature in a column below 500 95 

hPa, Tmax, as the sole predictor of SLR”. The Kuchera algorithm is defined as: 96 

SLRKuchera = {
12 + 2 𝑥 (271.16 − 𝑇𝑚𝑎𝑥), 𝑇𝑚𝑎𝑥 > 271.16

12 + (271.16 − 𝑇𝑚𝑎𝑥), 𝑇𝑚𝑎𝑥 ≤ 271.16
   (2) 

  

 97 

Other SLR methods, based on a single air temperature variable, abound. Van Cleave (2013) 98 

relies on 700 hPa temperature, and a method recently implemented in the HRRR model (Benjamin 99 

et al. 2021) uses the temperature in the lowest model layer. Byun et al. (2008) use the 2 m 100 

temperature. 101 

There are also a number of subregional SLR methods, such as that developed by Hoopes 102 

et al. (2023) for the mountain ranges of southern Arizona using gridded SLR analyses derived 103 

from Broxton et al. (2019). SLR in this case, however, is based on the 24-h change in the total 104 

depth of the snowpack divided by the 24-h change in snowpack SWE, which is a problematic due 105 

to compaction of the pre-existing snowpack. 106 

These legacy SLR methods have not been carefully evaluated over the western US.  107 

However, Pletcher et al. (2024) compared the performance of the NBM SLR methods to a random 108 

forest algorithm trained on local data at one western US site: Alta Ski Area in the Wasatch Range 109 

of northern Utah.  They found that the random-forest SLR algorithm produced substantially better 110 

SLR forecasts than the NBM methods, suggesting that an algorithm based on high quality regional 111 

observations might yield substantial forecast improvements for SLR over the western US.   112 

One issue that affects nearly all of the SLR algorithms created to date is the paucity of 113 

high-quality snowfall and SWE (therefore SLR) observations from conventional meteorological 114 

networks like the NWS Cooperative Observer Program (COOP; Mehta 2023) and Automated 115 

Surface Observing Station (ASOS; NOAA 1998). Most of the datasets used to build these SLR 116 

algorithms use SWE from precipitation gauges, and when precipitation is falling as snow, 117 
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precipitation gauges suffer from a problem known as undercatch, whereby wind flowing up and 118 

over the gauge orifice prevents many hydrometeors from falling into the gauge (Rasmussen et al. 119 

2012). Undercatch is nonexistent during calm conditions, but grows with increasing wind speed. 120 

MacDonald and Pomeroy (2007) showed that for just an 8 ms-1 wind speed, an unshielded gauge 121 

will only capture ~30% of the SWE that falls, and a gauge with an Alter shield will only capture 122 

~60% of the SWE that falls. Thériault et al. (2012) suggest that undercatch is likely even greater 123 

that this, especially when the snowflakes have little riming. Compounding this issue, gauge SWE 124 

amounts from the National Weather Service Cooperative Summary of the Day (COOP) do not 125 

distinguish between SWE produced by snow or other precipitation types (e.g., ice pellets or liquid 126 

precipitation), adding additional uncertainty to snowfall measurements. 127 

Another issue affecting legacy SLR algorithms is the fact that many of them were trained 128 

using observations mostly or completely from non-mountainous regions. Hydrometeor growth 129 

over mountainous regions is heavily influenced by the regions of ascent over the windward slopes 130 

of the terrain, with the majority of hydrometeor growth often happening <2 km above ground level 131 

(AGL) on these slopes. Storms in the interior ranges of the Western US also generally feature a 132 

temperature profile that decreases monotonically with height (e.g., Geerts et al. 2015; Aikins et al. 133 

2016; Friedrich et al. 2021). However, the dynamics of mountain waves, precipitation spillover, 134 

and flow blocking can often make for complex and difficult-to-predict accumulation patterns that 135 

can be far removed from the windward slopes (e.g., Neiman et al. 2002; Yuter et al. 2011; Geerts 136 

et al. 2015; Veals et al. 2020).  Over flatter regions like the eastern half of the US, midlatitude 137 

cyclones generally produce the majority of cool-season precipitation. The hydrometeors in these 138 

cyclones can see much of their growth occur >50 km away from their eventual accumulation 139 

location, can be lofted along the way, and often originate 7 km or more AGL. They also often 140 

feature complex temperature profiles, with warm layers and inversions (e.g., Lackmann and 141 

Thompson 2019; Janiszeski et al. 2024). Yet these are general differences, with a broad spectrum 142 

of atmospheric conditions possible for both flatland and mountain regions. 143 

In this study, we develop algorithms to predict SLR over the western US using high-144 

quality, manually measured snowfall and SWE observations from 14 geographically and 145 

climatologically diverse mountain observing sites. In Section 2, we describe the characteristics of 146 

these sites and observations, the techniques used to generate SLR algorithms, and the methods 147 

employed for verification.  Section 3 then examines the fidelity of these algorithms, which exhibit 148 
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significant improvement relative to NBM SLR methods based on randomized testing, and 149 

examines the role of the atmospheric variables in predicting SLR.  Section 4 summarizes the main 150 

conclusions, which illustrate the value of SLR algorithms based on high-quality regional data.   151 

 152 

2. Data and Methods 153 

a. Snowfall Observations 154 

  Data were obtained from 14 sites across the western US (Fig. 1, Table 1) where an observer 155 

takes manual observations of new snowfall and new SWE once or twice daily from a board that is 156 

wiped clean after each observation and placed atop the snowpack. SWE is based on a sample 157 

collected on the board by a coring tube and scale.  This reduces errors due to undercatch, although 158 

high-wind situations can still create representativeness errors in some circumstances. Twelve of 159 

the observations come from snow-safety (i.e., avalanche mitigation) teams working for 160 

departments of transportation on avalanche-prone highways or at ski resorts where avalanche 161 

mitigation is frequently conducted. The remaining datasets are HLY, operated by an avalanche 162 

forecaster at the Sawtooth Avalanche Center, and CSSL, the Central Sierra Snow Laboratory 163 

(cssl.berkeley.edu). To mitigate the influence of rounding and measurement errors on SLR 164 

calculations, we only used observations from periods with snowfall > 5.08 cm and SWE > 0.28 165 

cm.  These thresholds are consistent with prior studies (Judson and Doesken 2000; Roebber et al. 166 

2003; Alcott and Steenburgh 2010; Pletcher et al. 2024). We omitted observations (186 total) with 167 

SLR=10.0, as there were some cases in which the observer likely used 10.0 as a placeholder due 168 

to a missing depth or SWE observation. We tried omitting observations with SLR=20.0, as they 169 

appeared much more frequently than observations with SLR=19.0 or SLR=21.0, but omitting them 170 

did not significantly affect our results, so we chose to keep them. Careful investigation suggested 171 

that the increased frequency of SLR=20.0 reflects a tendency for observers, when measuring 172 

snowfall amounts ≤ 4 in (10.2 cm; the raw observations are taken in inches at most sites), to round 173 

the SWE amount to either 0.15 in (.38 cm) or 0.2 in (0.51 cm). Observations with SLR≤2 and 174 

SLR>50 were also omitted, as values in these ranges are more prone to rounding and/or 175 

measurement error.  176 

 177 
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 178 

Figure 1. Topography (m MSL following scale at bottom) of the Western US, with the locations of each of the 179 
14 observing sites used in this study, and their elevations indicated.  180 

 181 

Site Data Available Elevation (m) Approx. Observation Frequency N Observations 

BBL 2018–2024 2249 24 h 177 

BCC 2018–2024 2224 10 h and 14 h 234 

CLN 2018–2024 2945 12 h 444 

COM 2018–2024 2890 24 h 170 

CSSL 2021–2024 2098 8 h and 16 h 170 
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GTH 2018–2020,  

2022–2024 

2682 24 h 155 

HLY 2019–2024 1619 24 h 48 

JHBA 2018–2024 2012 24 h 108 

JHMM 2018–2024 2499 24 h 232 

MAM 2018–2024 2750 6–18 or 24 h* 177 

PVC 2018–2024 2118 11 h and 13 h 144 

SNQ 2018–2024 914 24 h 271 

STV 2020–2024 1219 24 h 176 

TRD 2018–2024 3612 24 h 194 

Table 1. For each of the 14 sites in this study, the name, period that data is available, elevation, approximate 182 
observation frequency, and number of observations used. *MAM observations are most often ~24 h, but during 183 
intense storms, 2 observations per day are taken, with intervals ranging from ~6–18 h. 184 
 185 

The period of record varies widely among the sites, but we limit the data to the study period 186 

2 October 2018 – 30 April 2024 for all sites. The beginning date was selected because it marks the 187 

beginning of HRRR data availability beyond forecast hour 18, which is required for our analysis. 188 

Therefore, data for all sites comes from the full study period, except for CSSL, GTH, HLY, and 189 

STV, which had some missing seasons in the study period (Table 1). Within the study period, we 190 

only consider the heart of the cool season, which we define as the months of November–April. 191 

This leaves 2700 total observations that are used in this study. 192 

 193 

b. Atmospheric Variables 194 

We build and evaluate one algorithm that uses atmospheric variables from the ERA5 195 

reanalysis (Hersbach et al. 2020), another algorithm that uses the High-Resolution Rapid Refresh 196 

model (HRRR; Benjamin et al. 2016), and another algorithm that uses the Global Forecast System 197 

model (NOAA EMC, 2024). The selection of atmospheric variables to consider in our algorithm 198 

was influenced by prior studies (e.g., Roebber et al. 2003; Alcott and Steenburgh 2010), the physics 199 

of ice crystal growth and metamorphism, and the available variables from the datasets used. These 200 

include: 201 
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(1) Temperature (T), specific humidity (Q), relative humidity (RH), and wind speed (SPD) 202 

linearly-interpolated from pressure coordinates to height AGL in increments of 400 m, 203 

spanning the surface to 4800 m AGL. The use of AGL coordinates makes the algorithm 204 

applicable at all elevations and grid points (pressure levels like 850 hPa are underground 205 

at many high elevation grid points, and 700 hPa may be near the surface at high elevations 206 

but 3 km above the flatlands and valleys). “T04” is used to denote T at 400 m AGL, “Q12” 207 

for Q at 1200 m AGL, “SPD24” for SPD at 2400 m AGL, and so on.  208 

(2) Cloud-top temperature (CTT). The cloud top was defined as either (A) the location of the 209 

maximum RH lapse rate, or (B) the first location, moving upward from the 2nd pressure 210 

level above ground, where first RH drops below 80% for 2 consecutive levels.  211 

(3) Solar altitude angle (Solar) during the observation period. We considered the mean and 212 

maximum, with the maximum having the strongest effect on SLR. Hereafter, we use the 213 

variable name “Solar” to denote the maximum solar altitude angle during the observing 214 

period. 215 

(4) SWE amount – both the model-forecasted (hereafter QPF) and observed amounts. 216 

(5) Temperature lapse rate – 1-2 km, 2-3 km, 3-4 km, 1-3 km, and 3-5 km AGL.  217 

(6) Convective Available Potential Energy (CAPE) – as calculated and output by the 218 

modelling/reanalysis system  219 

The process for attributing the atmospheric variable to the corresponding period of the SLR 220 

observation was as follows. To attribute the ERA5 reanalysis data to a 12-hour SLR observation, 221 

the mean of the ERA5 data within that 12-hour observation period is used. For a 24-hour 222 

observation, the mean of the ERA5 data within that 24-hour observation period is used, and so on 223 

for 8-hour observations, 16-hour observations, etc. 224 

For the GFS and HRRR, which are forecasts, the process was slightly different. We began with 225 

the assumption that any forecast hour before Forecast Hour 10 (Fhr10) was of limited utility in a 226 

real-world setting, as it provides very little lead time for consumers of the forecast to make plans 227 

or decisions. We then tested two different time matching schemes:  228 

(1) Only use data from the model initialization closest to the observation period, for which the 229 

observation period can fit entirely between Fhr10 and Fhr42.  230 

(2) Assemble a timeseries of only Fhr12-Fhr24 from only 00Z and 12 model initializations, 231 

which creates one continuous timeline of atmospheric data.  232 
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Both method 1 and method 2 performed similarly for SLR prediction, so we opted for method 2 233 

because it was much easier to deal with for coding, data management, and understanding any issues 234 

when debugging was required. For all datasets, we experimented with the mean, maximum, and 235 

minimum value of the atmospheric variables during the observation period from the gridpoint 236 

nearest the observing site, and found the mean to be best for predicting SLR.  237 

 238 

c. SLR Algorithm 239 

 We create four different SLR algorithm versions in this study, referred to as V1–V4. For 240 

V1 and V2, the atmospheric variables described above were fed into a multiple linear regression 241 

(MLR) calculator from the scikit-learn Python package (Pedregosa et al. 2011), along with the 242 

SLR observations from our 14 sites, to produce a predictive algorithm for SLR. For V3 and V4, a 243 

random forest (RF; Breiman 2001) regressor from scikit-learn is used instead to produce the 244 

predictive algorithm. To select the optimal hyperparameters for the RF, we began with the default 245 

values, including: 100 trees, no constraint on the maximum depth of the tree, a minimum of 2 246 

samples required to split a node, a minimum of 1 sample per node. We then experimented with a 247 

broad range of values for these hyperparameters, and none of the other values achieved a better 248 

predictive skill, so the default values are used in this study.  249 

We chose the MLR technique because it is computationally inexpensive, easy to share, and 250 

easy to implement in any coding language. We chose the RF because, for input consisting of >6 251 

atmospheric variables, the resulting algorithm exhibits greater skill than the corresponding MLR 252 

algorithm in predicting SLR, can learn nonlinear relationships, and has been useful in other 253 

meteorological tasks (e.g., Pletcher et al. 2024; Chase et al. 2023 and references therein). We also 254 

experimented with other machine learning techniques, including Support Vector Regression 255 

(SVR; Vapnik 1995), and a type of neural network known as a Multilayer Perceptron (MLP; 256 

Gardner and Dorling 1998). We did not include the SVR in this work because it was an order of 257 

magnitude slower than the RF, making it unsuitable for forecasting applications, and we did not 258 

include the MLP because it was less skillful than the RF for our application. 259 

All four algorithms (V1–V4) were built using a 60/40 train/test split, where 60% of the 260 

data (randomly selected) are used to train the algorithm, and the remaining 40% that have been 261 

withheld are used to test the performance of the algorithm. We evaluate the algorithm using the 262 

40% of observations that have been withheld for testing, and the evaluation is done 1000 times 263 
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(i.e. k-fold cross validation with k=1000). This sampling procedure is done because the split into 264 

the 60/40 train/test observations is random, and the resulting algorithm and its performance can 265 

depend to some extent on which observations are dealt into testing or training. By doing 1000 266 

permutations of the train/test split process, we can account for this variability when evaluating 267 

algorithm performance. We consider the mean performance of the 1000 splits as a good estimate 268 

of model skill. Because observations from the same site that are adjacent to each other in time (for 269 

example the 00Z and 12Z observations from the same day) may occur under similar atmospheric 270 

conditions, it is possible that including an observation in the testing dataset and its temporally 271 

adjacent counterpart in the training dataset would artificially inflate the skill of the algorithm. We 272 

tried omitting any observations from testing that had a temporally adjacent counterpart in training, 273 

and it did not substantially affect our results, so we opt to permit temporally adjacent observations 274 

to keep a larger sample size. 275 

 276 

d. NDFD data 277 

We obtained SLR forecasts from the NWS’s National Digital Forecast Database (NDFD) 278 

for all cool seasons (November through April) in the entire period of record, which yielded the 279 

cool season from November 2020 through April 2024. The NDFD is a gridded dataset consisting 280 

of the forecasts sent out by each NWS forecast office. To compute SLR from the NDFD, we divide 281 

the forecast hour 6-12 snowfall by the forecast hour 6-12 SWE accumulation, and then make a 282 

continuous timeseries of SLR from these 6-12 hour forecasts. The data for each site come from 283 

the nearest NDFD gridpoint to the site. 284 

 285 

3.  Results 286 

a. Climatology of the 14 sites 287 

The distribution of SLR from each site over its period of record is shown in Fig. 2, with 288 

observations limited to those with snowfall > 5.08 cm, SWE > 0.28 cm, SLR >2.0, SLR<50, and 289 

SLR  10.0. The sites in the Sierra Nevada and Cascade mountains (CSSL, MAM, SNQ, and 290 

STV), with their maritime snow climates (Trujillo and Molotch 2014), exhibit the lowest mean 291 

SLRs and narrowest SLR distributions (Fig. 2e,j,l,m). Although their SLR distributions are heavily 292 

skewed toward the lower values, they do still occasionally see events with SLR>20. Farther inland, 293 
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COM and TRD have greater mean and median SLRs, and tails extending more to the right (Fig. 294 

2d,n). Moving farther north and/or farther inland to BBL, BCC, CLN, GTH, JHBA, JHMM, and 295 

PVC, where colder storms are more common, the distributions and tails move even farther to the 296 

right, with SLRs >20 being quite common (Fig 2 a,b,c,f,h,i,k). However, even at these cold 297 

continental locations, there are still a significant number of dense snow events with SLR <6, 298 

highlighting the broad variability from storm to storm at these locations. The effects of the 299 

interaction between synoptic climatology and terrain orientation can also be seen when comparing 300 

2 sites in the Wasatch Range of Utah (BCC and PVC). BCC is <26 km from PVC, and both sites 301 

are at nearly the same elevation, yet PVC has a much lower median and mean SLR than BCC and 302 

CLN. The primary difference is that PVC receives a much greater fraction of its cool season SWE 303 

from southwesterly flow events, which tend to be warmer and windier than other flow directions 304 

(Steenburgh 2023). The effects of elevation on snow climate are also apparent when comparing 305 

SNQ and STV, which are <45 km from one another, yet STV has significantly higher mean and 306 

median SLRs. STV is 300 m higher in elevation, which appears to have a strong impact on SLRs 307 

in the relatively warm maritime climate of the Cascades.  308 
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Figure 2. Distribution of observed SLR for the full period of record at each of the 14 sites used in this study. 310 
Note that at each site, observations with SLR=10.0, SLR≤2.0, SLR≥50, SWE≤2.8 mm, and snowfall ≤50.8 311 
mm have been removed. 312 
 313 

b. V1 Algorithm 314 

 We began by creating a simple version of the algorithm (V1) that yielded the best possible 315 

skill using only temperature and wind speed to train an MLR. It only requires 4 variables (T04, 316 

SPD04, T24, and SPD24), with the addition of extra levels yielding negligible additional skill. We 317 

evaluate skill using R2 and mean absolute error (MAE), with R being defined here as the Pearson 318 

correlation coefficient (Wilks 2019). 319 

For our V1 algorithm, using data from ERA5, the mean R2 value for predicted SLR relative 320 

to observed SLR is 0.31, and the mean MAE value is 3.27, with the standard deviation (𝜎) of the 321 

MAE at 0.07. Figure 3a shows a run of the algorithm that produced R2 and MAE values equal to 322 

the mean of the 1000 train/test iterations. The predicted SLR most closely matches observed SLR 323 

for low and moderate SLR values, but for events when observed SLR is >20, the spread increases 324 

(Fig. 3a).  325 

 326 

Figure 3. Observed SLR vs SLR predicted by the V1 algorithm, evaluated against the 40% of observations that 327 
are withheld from training to be used for testing, using (a) ERA5 reanalysis, (b) GFS, and (c) HRRR as the 328 
source of atmospheric input variables, shown here for one of the 1000 permutations for which R2 and MAE were 329 
equal to the mean R2 and mean MAE of the 1000 permutations.  330 
 331 

 When the V1 algorithm is trained and tested the same way, but instead using GFS (Fig. 3b) 332 

and HRRR (Fig. 3c) data, the performance is nearly identical. The mean R2 and MAE using GFS 333 

data are 0.32 and 3.27, respectively. The mean R2 and MAE using HRRR data are 0.32 and 3.25, 334 

respectively. The similar performance between the ERA5, GFS, and HRRR suggests the 335 

differences in their depictions of temperature and wind speed values are not large enough to 336 
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appreciably affect the skill of SLR prediction for the V1 algorithm. 337 

 338 

c. Legacy SLR methods 339 

 We also computed SLR with 5 commonly used methods for comparison: (1) MaxTaloft, 340 

(2) Cobb, (3) Roebber, [all used operationally in NBM (Craven et al. 2020) v4.2], (4) the Kuchera 341 

method (described above), and (5) a fixed SLR. A sixth source of SLR, the forecast from the 342 

NDFD, is included, as it reflects the final SLR that goes out to users of NWS forecasts. 343 

When the Cobb method is applied to the HRRR data for each of the cases in our 2018-2024 344 

study period, and compared to the high-quality manual observations from our dataset, R2=0.04 and 345 

MAE=4.29 (Fig. 4a). The SLR values predicted by Cobb are mainly clustered in the 5-15 range, 346 

with large prediction errors and very little correlation with reality. It is also biased a bit low, 347 

tending to underpredict SLR compared observed. Cobb’s poor performance at these sites may be 348 

a result of the different distribution of vertical velocities, both in reality and in the HRRR, over 349 

complex terrain compared to flatter terrain. There may also be a different relationship between the 350 

location of hydrometeor growth and where the resulting hydrometeors reach the ground, over 351 

complex terrain compared to flatter terrain (see discussion of these difference near the end of 352 

Section 1). In other words, an algorithm that relies on vertical velocity locations and values 353 

observed over flat land may not perform well over complex terrain.  354 
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 355 

Figure 4. Observed SLR vs SLR from common sources of SLR prediction: (a) Cobb, (b) MaxTaloft, (c) Roebber, 356 
(d) Kuchera, (e) fixed 12.0 SLR, and (f) the NWS NDFD. No random test/training split needed for these datasets, 357 
so the total number of available observations are used. 358 

 359 

When the MaxTaloft method is applied to the HRRR data for each of the cases in our 2018-360 

2024 study period, and compared to the manual observations from our dataset, the R2=0.17 and 361 

MAE=6.51 (Fig 4b). MaxTaloft appears to greatly overpredict SLR (a high bias), with an even 362 

larger MAE than Cobb, and it rarely predicts SLR<10.0. The abrupt cutoff at ~22 reflects the 363 

boundary of MaxTaloft’s polynomial formula. 364 

 When the Roebber method is applied to the HRRR data for each of the cases in our 2018-365 

2024 study period, and compared to the manual observations from our dataset, the R2=0.23 and 366 

MAE=9.45 (Fig 4c). The predictions are biased quite high, with large prediction errors. The cluster 367 

of predictions at 25 reflects the fact that the NBM code caps the Roebber SLR prediction, with any 368 

prediction >25 set to 25. 369 

When the Kuchera algorithm is applied to the HRRR data for each of the cases in our 2018-370 

2024 study period, and compared to the observations from our dataset, the R2=0.23 and MAE=4.84 371 

(Fig 4d). The predicted SLR does exhibit some vague correlation with observed SLR, but the 372 

prediction errors are quite large and biased high. 373 
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Using a fixed SLR of 12.0 yields R2=0.0 and MAE=4.01 (Fig. 4e). We experimented with 374 

fixed SLR values from 10.0 to 13.0, in increments of 0.1, and 12.0 yielded the best performance 375 

in our dataset. This differs of course from the 10.0 that is commonly used for a fixed SLR, likely 376 

due to the fact that many of the sites in our dataset have mean and median SLRs around 12, 13, or 377 

even 14 (Fig 2).  378 

The final SLR that we evaluate is the forecast SLR from the NDFD. When compared to 379 

our observations, the R2=0.18 and MAE=3.82 (Fig 6f). This is the lowest MAE and best 380 

performance of the 6 legacy SLR techniques. The NDFD is a gridded aggregate of the forecasts 381 

issued by each NWS office, so the methods used to produce the final SLR values varies with time 382 

and by office, but the NDFD SLR outperforms all of the NBM SLR techniques. It does not, 383 

however, outperform the V1 algorithm. 384 

 385 

d. V2 and V3 Algorithms 386 

 To build the V2 algorithm, we began with the variables described in Section 2b and used 387 

recursive elimination, stepwise screening regression, and lasso regression (Wilks 2019) to identify 388 

the optimal set of input variables from the HRRR, selecting for the lowest MAE and highest R2 389 

value relative to observed SLR. The combination of variables that added skill to the algorithm 390 

includes: T04, SPD04, SPD24, RH04, RH24, Q04, Q24, model QPF, CAPE, and Solar. When 391 

these variables are input into an MLR, the performance of the V2 algorithm improves relative to 392 

V1, with R2=0.39 and MAE=3.05 (Fig. 5a). This includes some improvement in predicting SLRs 393 

>20, although these events remain a challenge. In practical terms, the algorithm does not have the 394 

ability to discriminate between the conditions associated with an observed SLR of 15 and those 395 

associated with an SLR of 25. 396 

 397 
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 398 

Figure 5. Observed SLR vs SLR predicted by (a) the V2 and (b) V3 algorithms, evaluated against the 40% of 399 
observations that are withheld from training to be used for testing, shown here for one of the 1000 permutations 400 
for which R2 and MAE were equal to the mean R2 and mean MAE of the 1000 permutations.  401 
 402 

 403 

 The V3 algorithm uses a RF regressor instead of MLR to increase skill. This V3 of the 404 

algorithm, when compared to observed SLR, yields R2=0.43 and MAE=2.94 (Fig 5b). The 405 

increased skill of V3 relative to V2, given the same set of input variables, is a result of the RF’s 406 

ability to detect and replicate nonlinear relationships between the input variables and SLR. The 407 

relationships predicted by the MLR are, by definition, linear. Even though V3 is more skillful than 408 

V2 on the whole, there is little or no improvement in anticipating the high SLR events (Fig 5b). 409 

 410 

e. Importance of each variable 411 

 The logical next step in this study is to explore the importance of each variable to the fit of 412 

the algorithm. For V2, which is an MLR, the algorithm must be re-run using the standardized 413 

anomaly of each variable, rather than its actual value. This does not change the fit or skill of the 414 

algorithm; it simply makes the coefficient of each term in the regression equation represent the 415 

relative contribution of its corresponding variable to the fit of the equation. The train/test split and 416 

the MLR fit are performed 1000 times and the coefficients recorded for each of these 1000 417 

permutations. This process determines that Q04 (400 m AGL specific humidity) to have the 418 

greatest contribution to the MLR equation with a median coefficient of -2.3 (Fig 6a). A negative 419 



19 

 

coefficient indicates SLR decreases with increasing Q04. The next most important variable is 400 420 

m AGL wind speed (SPD04), with a median coefficient of -0.8, followed by RH24 with a median 421 

coefficient of 0.7, and HRRR QPF with a median coefficient of 0.65 (Fig 6a).  422 

 423 

 424 

Figure 6. (a) For the V2 algorithm, with all atmospheric input variables from the HRRR converted to 425 
standardized anomalies, the coefficients for each term in the MLR equation. The magnitude of a coefficient is 426 
proportional to its importance in predicting SLR in the equation. The box-and-whisker plots represent the 1000 427 
different values of the coefficient for the 1000 permutations. (b) For the V3 algorithm, the importance of each 428 
variable in the Random Forest regression. The box-and-whisker plots represent the different values of the 429 
coefficient for the 1000 permutations. The differences between boxes are statistically significant at the 95% 430 
confidence interval if the notches area around the medians do not overlap. 431 

 432 

 The importance of each variable in the RF version of algorithm V3, as again determined 433 

by 1000 permutations, looks somewhat different than for the MLR. The scoring of relative 434 

importance is also determined differently for the RF, with the nonlinear fits for each variable 435 

making it impractical to assign a single sign to the contribution of the variable. So feature 436 

importance for the RF is determined by the contribution to model fit when the values in a column 437 

are randomly reshuffled (Breiman 2001). As in the MLR algorithm, Q04 is again the greatest 438 

contributor to the fit by a wide margin, with a median relative importance of 0.24 (Fig 6b). Then 439 

in a distant 2nd, 3rd, and 4th place are T04, SPD04, and HRRR QPF, respectively. The main contrast 440 

with the MLR relative importances is that T04 has a much more prominent role (2nd most important 441 

variable) in the RF than it does in the MLR. This suggests that when temperature is permitted to 442 

have a nonlinear fit, it more accurately predicts SLR.  443 
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 444 

f. Relationships amongst variables 445 

 For the most important atmospheric variables identified in the previous section, the key 446 

relationships amongst them and with observed SLR are explored next. The observed SLR exhibits 447 

an increasing trend with decreasing T04 up until values of around -15 C, when the relationship 448 

changes sign and colder values actually tend to yield increasing SLR (Fig 7a). Something 449 

resembling this can be seen in a number of prior studies (Byun et al. 2008; Alcott and Steenburgh 450 

2010). It suggests that when T04 is colder than about -15 C, the temperature in the zone where 451 

most crystals are growing (likely at or above the 400 m AGL level where T04 is defined) is cold 452 

enough that dendritic crystals are no longer favored, and crystal habits that pack more densely, 453 

like plates and columns, are beginning to be favored. See Nakaya (1954) and Bailey and Hallett 454 

(2009) for more information on favored crystal habit as a function of temperature. 455 

 456 
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 457 

Figure 7. For all observations, (a) observed SLR vs T04, (b) observed SLR vs SPD04, (c) observed SLR vs Q04, 458 
(d) T04 vs Q04, (e) observed SLR vs QPF, and (f) observed SLR vs observed SWE. 459 

 460 
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 461 

 The relationship between SPD04 and observed SLR is weaker, with a decreasing SLR trend 462 

with increasing SPD04 (Fig. 7a). This is due to the tendency for increasing wind speeds to fracture 463 

ice crystals, with the resulting fragments likely packing more densely than intact crystals (e.g., 464 

Steenburgh 2023). The relationship appears most useful for forecasting when values of SPD04 are 465 

≥20 ms-1. Under these conditions, only one instance of SLR >20 occurs in our dataset.  466 

 The relationship between Q04 and observed SLR is stronger than that of T04 and observed 467 

SLR (Fig. 7c). This is a bit surprising, as T04 and Q04 are very closely related (Fig 7d), with the 468 

Clausius-Clapeyron equation governing their relationship when the air is at saturation (Wallace 469 

and Hobbs 2006). The relationship between Q04 and observed SLR is also roughly the same shape 470 

(though the opposite sign) as that of T04 and observed SLR, with a trend reversal around Q04 ≅ 471 

1.5 g kg-1, below which observed SLR decreases. Yet an important factor appears to be that the 472 

trend reversal is not nearly as pronounced for Q04 as it is for T04. For moderate and high values 473 

of Q04, there is also much less variability in SLR for a given value of Q04 than there is for a 474 

moderate or high value of T04 (cf. 7a, 7c).  475 

As for potential physical explanations of the Q04-SLR relationship, it is well established 476 

that at saturation in subfreezing clouds, increasing temperature (and therefore specific humidity) 477 

generally leads to increasing supercooled liquid water content (SLWC; e.g., Gultepe and Isaac 478 

1997). Increasing SLWC, in turn, leads to increased riming (Waitz et al. 2022). Yet this would 479 

suggest temperature is just as important, at least near saturation, as specific humidity. This result 480 

is also at odds with previous studies, which conclude that temperature is more important. Therefore 481 

future work is needed to examine these physical processes, in particular the differences in snow 482 

growth over lowland regions compared to mountain regions. 483 

 HRRR QPF is negatively correlated with observed SLR (Fig 7e). This is likely due to the 484 

fact that an increasing amount of SWE on the interval board leads to increasing compaction of the 485 

entire column under its own weight. Supporting this assertion, the relationship between observed 486 

SWE and observed SLR is much stronger (Fig 7f). This means that for modelling systems with 487 

QPF forecasts that tend to be closer to reality, more skillful SLR prediction is possible. It also 488 

means that for non-forecasting applications, where observed SWE is available as a variable for 489 

SLR prediction, even greater forecasting skill than that of the V3 algorithm is possible.  490 

 491 
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g. V4 Algorithm 492 

 The V4 algorithm is identical to the V3 algorithm, except that it uses observed SWE instead 493 

of HRRR QPF. As mentioned above, this is only useful for applications that are run after a snowfall 494 

event is over, like snowfall analyses, in which observed SWE for the event is available.  495 

The V4 algorithm, when compared to observed SLR, predicts SLR with R2=0.54 and 496 

MAE=2.64. (Fig 8a). When the feature importance is calculated for the algorithm, using 1000 497 

permutations, observed SWE is the greatest contributor to the fit by a wide margin, with a median 498 

relative importance of 0.28 (Fig 8b). Q04 is relegated to a distant 2nd place with a median 499 

importance of 0.13, followed by T04 in 3rd place at 0.07. The most dramatic illustration of V4’s 500 

increased skill is how well it handles high SLR (>20) events (Fig 8a). It is clear that a major factor 501 

contributing to the difficulty of V1–V3 in forecasting high SLR events is that QPF forecasts have 502 

large errors. If SWE could be forecasted perfectly, high SLR events would not be nearly as 503 

challenging to predict. SWE amount is the single most important variable in predicting SLR 504 

accurately. 505 

 506 

Figure 8. (a) Observed SLR vs SLR predicted by the V4 algorithm, evaluated against the 40% of observations 507 
that are withheld from training to be used for testing, using HRRR as the source of atmospheric input variables, 508 
shown here for one of the 1000 permutations for which R2 and MAE were equal to the mean R2 and mean MAE 509 
of the 1000 permutations. (b) For the V4 algorithm, the importance of each variable in the Random Forest 510 
regression. The box-and-whisker plots represent the different values of the coefficient for the 1000 permutations. 511 
The differences between boxes are statistically significant at the 95% confidence interval if the notches area 512 
around the medians do not overlap. 513 

 514 

Because the V4 algorithm is trained with observed SWE, it is only skillful when it is 515 
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applied to observed SWE. If it is applied to model QPF, it performs poorly (not shown). This is 516 

because model QPF often deviates substantially from, and is biased compared to, observed SWE. 517 

For model QPF to add skill, the algorithm must be trained on model QPF (this is what V2 and V3 518 

are).  519 

 520 

4. Summary and Conclusions 521 

 This study utilizes a novel dataset of manually-collected snowfall and SWE measurements 522 

taken every ~24-h or less from an interval board placed atop the snowpack by snow safety workers 523 

and scientists at 14 sites across the western US. We then use these observations and atmospheric 524 

variables from either the ERA5, the GFS, or the HRRR to train a MLR or RF algorithm to predict 525 

SLR. A simple model utilizing only temperature and wind speed at 2 levels as the predictive 526 

variables (known as V1) performs well when compared to observed SLR events that were withheld 527 

from training the algorithm, with R2=0.32 and MAE=3.27 when using the GFS forecasts. When 528 

the training source was instead ERA5 reanalysis or HRRR forecasts, the R2 and MAE values were 529 

within 1% of the above values. 530 

 These R2 and MAE values from the simple V1 algorithm substantially outperform the 3 531 

SLR algorithms (Cobb, MaxTaloft, and Roebber) that are used operationally in the NBM version 532 

4.2. The respective R2 values for those algorithms, when compared to observed SLR values, are 533 

0.04, 0.17, and 0.23, with respective MAE values of 4.29, 6.51, and 9.45. The V1 algorithm also 534 

substantially outperforms a commonly used but unpublished algorithm known as the Kuchera 535 

method. When SLR predicted by Kuchera is compared to observed SLR, R2=0.23 and MAE=4.84.  536 

There are several potential explanations for the poor performance of the 4 legacy SLR 537 

algorithms relative to observations. The first is that these 4 algorithms were trained partly or 538 

entirely on SLR observations for which the liquid equivalent came from a precipitation gauge, and 539 

precipitation gauges, even with an Alter shield, can underatch falling snow by 40% or more 540 

(MacDonald and Pomeroy 2007; Thériault et al. 2012). Such undercatch would strongly affect the 541 

resulting SLR values. The observations used in our dataset are not immune to the effects of high 542 

winds, but using a weighed core from an interval board is substantially less error-prone than a 543 

precipitation gauge. Another issue is that algorithms like Cobb and MaxTAloft are mostly trained 544 

with variables from NWP over relatively flat terrain. In the complex terrain of the western US, 545 

steep slopes can dramatically increase or decrease vertical velocity, for example. Complex terrain 546 
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may also cause most crystal growth and riming to happen at different heights above ground level 547 

than they do over flat terrain. Furthermore, the synoptic climatology of the sites used in this study 548 

may differ from that of the cyclone-dominated central and eastern US. 549 

 The V1 algorithm also substantially outperforms two other sources of SLR forecasts. If a 550 

fixed 12.0 SLR is used (12.0 yielded the best performance for our dataset) and compared to 551 

observed SLR, R2=0.0 and MAE=4.01. The SLR forecasts from the NDFD are obtained for the 4 552 

cool seasons that they are available from the archive (2020–2024) and compared to observed SLR. 553 

R2=0.18 and MAE=3.82. The NDFD is a gridded aggregate of the forecasts issued by each NWS 554 

office. 555 

 We trained the V2 and V3 algorithms on the optimal combination of atmospheric variables 556 

from the HRRR to achieve the maximum possible skill, as defined by R2 and MAE. The optimal 557 

combination of variables was T04, SPD04, SPD24, RH04, RH24, Q04, Q24, model QPF, CAPE, 558 

and Solar. The V2 algorithm is a MLR trained with these variables, and when its forecasted SLR 559 

is compared to observed SLR from a set of data points withheld for testing, the resulting R2 and 560 

MAE are 0.39 and 3.05, respectively. The V3 algorithm is a RF model trained with the same 561 

variables. When V3 algorithm, which contains complex nonlinear relationships to predictive 562 

variables, is used to build an algorithm, the resulting R2 and MAE are 0.43 and 2.94, respectively. 563 

For both the V2 and V3 versions of our algorithm, the most important variable is Q04 by a wide 564 

margin. In a distant 2nd, 3rd, and 4th place for importance in the V2 algorithm are SPD04, RH24, 565 

and model QPF, respectively. In a distant 2nd, 3rd, and 4th place for importance in the V3 algorithm 566 

are T04, SPD04, and model QPF, respectively. High SLR (>20) events are the most challenging 567 

for the algorithms, though these events account for 7% of the cases in the dataset. 568 

 The V4 algorithm is identical to V3, except that it uses observed SWE instead of HRRR 569 

QPF. This means it is only useful for applications that are run after a snowfall event is over, like 570 

snowfall analyses, in which observed SWE for the event is available. When forecasted SLR from 571 

V4 is compared to observed SLR from a set of data points withheld for testing, the resulting 572 

R2=0.54 and MAE=2.64. The use of observed SWE as a predictor, instead of QPF, is responsible 573 

for the dramatic improvement in algorithm performance. The high SLR (>20) events do not pose 574 

nearly the forecasting challenge that they do for the V1, V2, and V3 algorithms. SWE becomes 575 

the most important variable by a wide margin, followed by Q04, T04, and SPD04 in a distant 2nd, 576 

3rd, and 4th place, respectively. This shows that much of the difficulty in forecasting high SLR 577 
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events is due to the uncertainty in QPF amounts. If QPF were a perfect forecast of SWE, high SLR 578 

events would not be nearly as difficult to predict.  579 

 In summary, the V1, V2, and V3 algorithms represent a large increase in skill for SLR 580 

prediction compared to the current algorithms and techniques used by forecasters, and the V4 581 

algorithm is quite skillful for non-forecasting applications. But these algorithms were only trained 582 

to mountain sites with colder temperatures, located closer to cloud base, and different synoptic and 583 

mesoscale weather conditions than much of the lowlands and flatlands of the US. Therefore, future 584 

work will include developing an algorithm trained on high-quality manual snowfall observations 585 

from the entire US. A final important caveat is that because most of the legacy SLR algorithms are 586 

trained using precipitation gauge observations that often suffer from undercatch, these algorithms 587 

may verify more favorably when evaluated with such gauge observations. Conversely, the 588 

algorithms we’ve developed may not perform as well when these gauge observations are treated 589 

as the “truth”.  590 

 591 
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